Open RAN: Attacks against mobile operators from the outside in practice

Two years ago, communications in the telecommunication industry have sparked significant concern regarding the ease with which Open RAN could potentially be hacked [9][10], prompting a deeper exploration of its security implications for the mobile telecommunications sector and related fields. Open RAN, heralded as a transformative force in telecom infrastructure through its innovative standards and concepts, has not only captured the industry's attention for its ability to shift paradigms but also for the security challenges it may introduce, particularly in areas where integrity, confidentiality, and availability are paramount. Security experts have drawn parallels between the vulnerabilities in Open RAN and those found in cloud infrastructures relying on Docker and Kubernetes, underscoring the importance of scrutinizing OpenRAN's unique risk profile [1]. The discourse is further enriched by analyses that identify new interfaces Open RAN will introduce for interconnecting various network functions [2], highlighting potential attack vectors. Despite the wealth of small existing literature, the abstract nature of these risks has led to the initiation of this article, aiming to elucidate practical attack strategies against current Open RAN implementations and identify emerging threats. Employing the state-of-the-art open-source O-RAN [13] stack as a case study, this series seeks to shed light on the evolving security requirements of Open RAN. An examination of existing products that are "ready for commercial deployment" and compliant with O-RAN standards reveals a complex security landscape, necessitating a comprehensive analysis of risks under typical deployment scenarios [3]. This article sets the stage by introducing Open RAN, its predecessors, and its overarching architecture, followed by a detailed examination of the communication interfaces that could serve as attack vectors, and practical attack we can perform using O-RAN stack.

Continue reading

An introduction to mobile network mobile intrusion from a mobile phone

With the introduction of the packet service, mobile user equipment (UE) can use the IP communication protocol. Without the proper routing and filtering of UE communications, some sensitive assets on the operator's infrastructure could be exposed, such as core network services. Mobile operators generally know this attack vector and apply suitable mechanisms to avoid risk from the subscriber context. Nevertheless, those mechanisms differ from one operator to another, and their effectiveness varies. Research aspects in mobile networks are evolving a lot with the development of the SDR (Software-Defined Radio) and the SDNs (Software-Defined Networks), which introduce new kinds of architectures. These new architectures are mostly cloud-based systems and include new features that need time to understand and entirely mature from the deployment perspective. In addition, with the research progress of SDR based 4G and 5G-NR NSA networks, new services also appeared to be used inside organizations like private mobile networks. However, the organization itself only provides all security procedures and mechanisms. This post is an overview of previous assessments on private GPRS and LTE mobile network commercial and public solutions and 5G-NR NSA setups.

Continue reading

Subscribe to our mailing list

New content, events, products, services, and more!

* indicates required