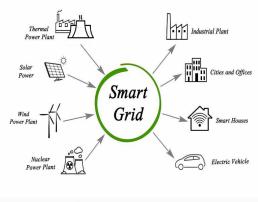
Smart grid (in)security

Sébastien Dudek

CiderSecurityCon, March 14th 2020

Who am I


Pent.

- Sébastien Dudek (@FlUxIuS)
- Founded PentHertz: RF and hardware security company
 - Pentests and Red Team tests
 - Researches
 - Trainings
 - HW & SW tools
- Interests: SDR, Hardware, RFID, Wi-Fi, 2G/3G/4G/5G, Bluetooth, LoRa, mobile networks, etc.

Smart Grids

- Energy distribution which aims to be "smart"
- Sensors and transmission + analysis devices → production + consumption
- Implemented Smart City compliant areas

Source: smart-energy.com

Why?

- Mainly to avoid issues in the past \rightarrow power outage (e.g Northeast blackout of 2003¹)
- Many issues:
 - Cable expansion due to heat rise \rightarrow sags between supporting structure \rightarrow flashover
 - + Flashover \rightarrow triggers protection relays
 - If the other lines do not have enough spare capacity \rightarrow cascading failure
- $\cdot\,$ Need to use efficiently "smart" technologies for:
 - Wide variety of generation sources
 - Distribution assets coordination
 - Predict and control power consumption
 - Use energy storages for renewable energy production
 systems...

¹https://www.scientificamerican.com/article/2003-blackout-five-years-Pent Ater/ Hertz

- Aims to manage small scale energy production nodes
- Manages the storage and distribution
- \cdot Use these nodes effectively
- Includes:
 - smart meters
 - smart appliances
 - renewable energy resources
 - and energy-efficient resources

Smart meters

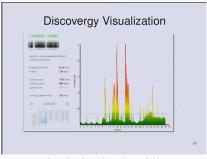
Smart meters

Pent

- Official householders benefits:
 - estimated bills
 - better manage their energy purchases...
- The main purpose is to match consumption with generation
- Different prices according to time
- Data management: HomePlug (AV/GP)/IEEE 1901 and ITU-T G.hn

Source: https://en.wikipedia.org/wiki/Smart_meter

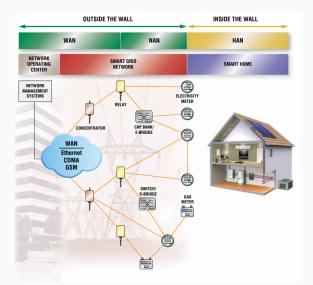
But there is also Wi-Fi, LoRa, ZigBee, GSM/GPRS, etc.


Source: Netanel Rubin at 33c3

And issues regarding ZigBee and GSM/GPRS connections

Smart meters: Discovergy case

Consumption plots exposed on Discovergy web interface:



Source: Dario Carluccio and Stephan Brinkhaus at 28c3

Researchers were able to identify devices against plots sent to Discovergy servers

Smart meters architectures

Source: https://www.mouser.com/pdfdocs/Solar-Maxim-Smart_Grid_Communications.pdf

Region	WAN	NAN	HAN		
North America	Cellular, WiMAX	G3-PLC, HomePlug [®] , IEEE 802.15.4g, IEEE P1901, ITU-T G.hnem, proprietary wireless, Wi-Fi	G3-PLC, HomePlug, ITU-T G.hn, Wi-Fi, ZigBee, Z-Wave		
Europe	Cellular	G3-PLC, IEEE P1901, ITU-T G.hnem, PRIME, Wi-Fi	G3-PLC, HomePlug, ITU-T G.hn, Wi-Fi, Wireless M-Bus, ZigBee		
China	Cellular, band-translated WiMAX	G3-PLC, RS-485, wireless to be determined	G3-PLC, RS-485, Wi-Fi, to be determined		
Rest of the World	Cellular, WiMAX	G3-PLC, HomePlug, IEEE 802.15.4g, IEEE P1901, ITU-T G.hnem, PRIME, RS-485, Wi-Fi	G3-PLC, HomePlug, ITU-T G.hn, RS-485, Wi-Fi, Wireless M-Bus, ZigBee, Z-Wave		

Source: https://www.mouser.com/pdfdocs/Solar-Maxim-Smart_Grid_Communications.pdf

Do you see something familiar here?

Region	WAN	NAN	HAN		
North America	Cellular, WiMAX	G3-PLC <mark>, HomePlug[®] IEEE 802.15.4g, IEEE P1901,</mark> ITU-T G.nnem, proprietary wireless, Wi-Fi	G3-PLC, HomePlug ITU-T G.hn, Wi-Fi, ZigBee, Z-Wave		
Europe	Cellular	G3-PLC, IEEE P1901, ITU-T G.hnem, PRIME, Wi-Fi	G3-PLC, HomePlug, ITU-T G.hn, Wi-Fi, Wireless M-Bus, ZigBee		
China	Cellular, band-translated WIMAX	G3-PLC, RS-485, wireless to be determined	G3-PLC, RS-485, Wi-Fi, to be determined		
Rest of the World	Cellular, WiMAX	G3-PLC, HomePlug, IEEE 802.15.4g, IEEE P1901, ITU-T G.hnem, PRIME, RS-485, Wi-Fi	G3-PLC, HomePlug ITU-T G.hn, RS-485, Wi-Fi, Wireless M-Bus, ZigBee, Z-Wave		

Source: https://www.mouser.com/pdfdocs/Solar-Maxim-Smart_Grid_Communications.pdf

Do you see something familiar here? \rightarrow use of PLC and HomePlug

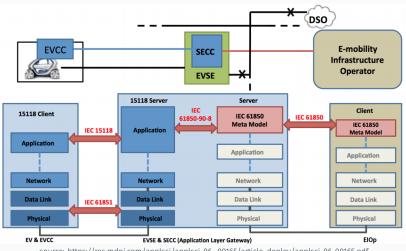
Renewable energy storage

- Renewable energy production \rightarrow variable and difficult to predict (solar, wind, user consumption, etc.)
- People had to think about ways to store it
- + First energy storage system \rightarrow Battery-to-Grid (B2G)
- + In // Electric Vehicles \rightarrow gaining popularity (U.S.A., Japon, China and UE)
- \rightarrow Why not use car's battery for energy storage too?

The rise of V2G

- V2G: Vehicle-to-Grid
- Use Electric Vehicles (EVs) to store energy
- In bidirectional charging/discharging systems \rightarrow pay for charging or get paid \rightarrow compensate battery deterioration

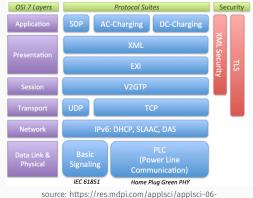
Looking at specs \rightarrow V2G systems communicate with a protocol



V2G uses several standards to communicate:

- ISO/IEC 15118: Vehicle-to-Grid (V2G) communication
- IEC 61851: conductive charging system
- IEC 61850-90-8: communication networks for EVs
- and so on.

Architecture



source: https://res.mdpi.com/applsci/applsci-06-00165/article_deploy/applsci-06-00165.pdf

V2G layers

- V2G data exchanged over IPv6
- SECC (UDP) → EV
 Supply Equipment
 (EVSE) host and port
- XML data \rightarrow EXI encoded
- HomePlug Green
 PHY used to transfer data...

source: https://res.mdpi.com/applsci/applsci-06-00165/article_deploy/applsci-06-00165.pdf

HomePlug PLC devices

Introduction

- PLC: Powerline Communication
- Principle discovered by Edward Davy in 1838
- Released in the early 2000s for home applications
- Evolves a lot in therms of speed

Could be found in various applications.

Classical: domestic

- ► Use HomePlug specifications (Ex. HomePlug AV)
- Extend a local network
- Depending on the context cheaper than buying multiple repeaters
- Generally more reliable than Wi-Fi

Other cases

Applications

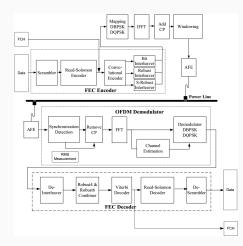
Classical: domestic

Other cases

Electrical counters:

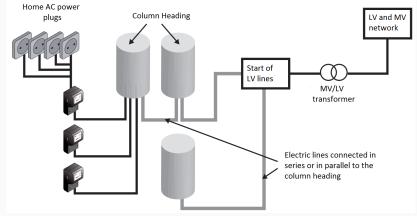
- Like Cenélec (3-148.5 kHz low voltage) are used : meter readings, intruder alarms, fire detection, gaz leak detection, and so on.
- Linky G3, G1 specs, etc.
- But some countries use HomePlug specifications for their counters
- Smart grid \rightarrow recently found in missions
- Home automation

And so on.

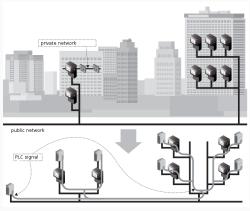


- + AC voltage is 50 Hz \rightarrow a signal do 50 cycles/s
- Could be represented by the formula: $Ps = A\sqrt{2}sin(2\pi ft)$ (f: frequency in Hz; t: time)
- The data (Da) is superposed to this carrier \rightarrow Td = Ps + da)

But before being sum to the power supply \rightarrow need error detection, code mapping, multi-carrier modulation

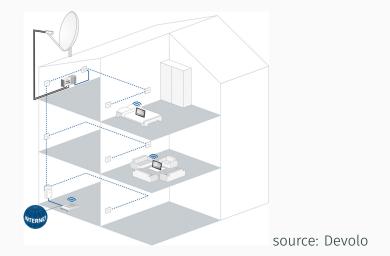


- 1. data scrambling
- 2. turbo encoding
- 3. modulation of control and data frames
- 4. form OFDM symbols
- 5. windowing
- 6. etc.


Data transmission at home

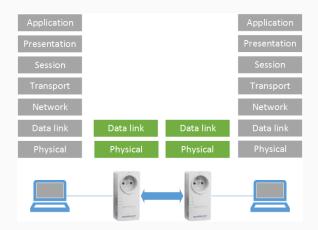
source: PLC in Practice by Xavier Carcelle

Private vs Public network



source: PLC in Practice by Xavier Carcelle

 \cdot In reality: no choc-coil \rightarrow no real private network


Data transmission at home

PLC layers

A PLC uses layer 1 and 2 of the OSI model \rightarrow IEEE 802.3

$\mathsf{Computer} \leftrightarrow \mathsf{PLC}$

- Communicate through Ethernet on MAC layer
- Clear text (no ciphering)

$\mathsf{PLC}\leftrightarrow\mathsf{PLC}$

- Communicate through powerline
- ► Data is encrypted (using AES CBC 128 bits on new PLCs)

Everything is defined in HomePlug AV specifications

CPL A		CPL B						
		HomePlug					DS2	Spidcom
		1.0, Turbo	AV	Oxance	BPL	СС		
HomePlug	1.0, Turbo							
	AV							
	Oxance							
	BPL							
	CC							
DS2 AV200								
Spidcom								

But also with HomePlug Green PHY

Homeplug GP (Green PHY) \rightarrow subset of HomePlug AV

	-		_	
РНУ	Parameter	HomePlug AV	HomePlug GP	
	Spectrum	2 MHz to 30 MHz	2 MHz to 30 MHz	
	Modulation	OFDM	OFDM	
	# Subcarriers	1155	1155	
	Subcarrier spacing	24.414 kHz	24.414 kHz	
	Supported subcarrier modulation formats	BPSK, QPSK, 16 QAM, 64 QAM, 256 QAM, 1024 QAM	QPSK only	
	Data FEC	Turbo code Rate ½ or Rate 16/21 (punctured)	Turbo code Rate ½ only	
	Supported data rates	ROBO: 4 Mbps to 10 Mbps	ROBO: 4 Mbps to 10 Mbps	
		Adaptive Bit Loading: 20 Mbps to 200 Mbps	4 Mbps to 10 Mbps	

- + HomePlug Green PHY (HPGP) \rightarrow subset of HomePlug AV
- HomePlug AV used to extend domestic local network
- HPGP Intended to be used for "smart" grid or other automation systems
- Throughput decreased \rightarrow use of QPSK instead of high order QAM
- HomePlug AV higher peak rate than HomePlug Green PHY

Publication

- + Power Line Communications in Practice by Xavier Carcelle \rightarrow a must read!
- HomePlug AV Security Mechanisms by Richard Newman, Larry Younge, Sherman Gavette, and Ross Anderson, published in 2007
- MISC #37 HomePlug Security by Xavier Carcelle
- HomePlugAV PLC: Practical attacks and backdooring, at NoSuchCon 2014, by Sébastien Dudek → introducing a flaw in Direct Access Key (DAK) generation
- V2G Injector: Whispering to cars and charging units through the Power-Line, at SSTIC 2019, by Sébastien Dudek
 → introducing a new flaw in HomePlug Green PHY

Tools

- + plconfig \rightarrow manage PLCs over the network
- + FAIFA² by Xavier Carcelle (similar to plconfig) \rightarrow first Open source PLC tool
- Vendors' softwares
- open-plc-utils³ by Qualcomm Atheros, published after FAIFA
- Wireshark has a dissector for HomePlugAV, but not for HomePlug GP
- HomePlugPWN⁴ by Sébastien Dudek: Scapy dissectors for HomePlug AV / GP(new), attack DAK keys and collect HomePlug GP secrets(new)

²https://github.com/ffainelli/faifa ³https://github.com/qca/open-plc-utils **Pent**/https://github.com/FlUxIuS/HomePlugPWN Hertz

- Used for domestic purposes
- Some tools are also accessible
- Same technology is used for Smart grid devices \rightarrow and everything is spread on an electrical line...

Current attacks

2 techniques:

- 1. NetworkInfo Req \rightarrow Confirmations \rightarrow Station informations
- 2. Enable Sniff Mode \rightarrow get MME of Central Coordinators (CCo)
 - A detected CCo = potential AV logical network

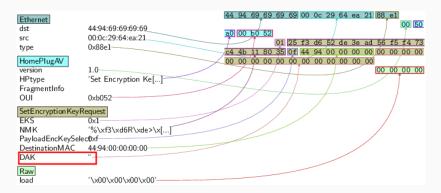
But NetworkInfo confirmation messages list stations of the same AVLN only \rightarrow need to be smarter

Detection of HomePlug AV/GP devices with sniff mode

To detect Central Coordinator (CCo) devices \rightarrow same old tricks are still possible:

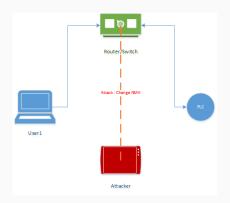
- Enabling sniff mode with *plcmon.py* provided in HomePlugPWN tool
- 2. See all EVSE that appears as CCo devices reported by Sniff indicate packets

	385 75.485626675 386 75.487150532	00:c4:ff:ee:00:00 Broadcast :54:14 00:c4:ff:			t Device/SW Version Request t Device/SW Version Confirmation	
	1306 256.233230078			21 MAC Management, Sni		
	1307 256 234671373			60 MAC Management, Sni		
	1308 256,235265211			186 MAC Management, Sni		
	1309 256,242717427			186 MAC Management, Sni		
	1310 256,283084291			186 MAC Management, Sni		
	1311 256.322450233	05:54:14 00:c4:ff:	ee:00:00 HomeP1	186 MAC Management, Sni	iffer Indicate	
	1312 256 362403427	05:54:14 00:c4:ff:	ee:00:00 HomeP1	186 MAC Management Sni	iffer Indicate	
	4					F .
		es on wire (1488 hits). 186 byte				
	Ethernet II, Src:), Dst: 00:c4:ff:ee:G	0:00 (00:c4:ff:ee:00:00))	
	 HomePlug AV protoco. 	1				
	0000 00 c4 ff ee 00 0					
	0010 a0 00 b0 52 00 0					
	0020 00 00 b0 47 6d 6 0030 00 00 8f ef 52 f					
	0030 00 00 8f ef 52 f 0040 06 00 01 fd 34 3					
		4 06 03 fe 09 00 13 04 9c 0a ff				
	0050 00 TT 07 00 D0 5					
	00 00 00 00 00 0					
Pent	1					


2 kinds of keys to manage and encrypt data:

- Network Membership Key (NMK): to encrypt the communication using 128-bit AES CBC
- Direct Access Key (DAK): to remotely configure the NMK of a targeted PLC device over the Power-Line interface

Configuring the NMK


- \cdot if local ightarrow DAK can be empty
- remotely the DAK of the targeted device should be included

Attacking the local/management interface

- Ethernet interface: allowed to perform privileged operations
- If an attacker is on the LAN \rightarrow backdoor the device:
 - Program it's own NMK
 - Replace device's firmware

DAK generation status

- Qualcomm devices had a weak DAK \rightarrow see our research paper presented at NSC 2014
- In Feb 2015: Qualcomm patched their utility, refering to their GitHub:

*	00 -183,25 +190,28 00 static void function (const char * file, unsigned count, unsigned group, unsigne		
		190	A CONTRACT OF
104	**/	191	1
185		192	
186	-Addfine DEFAULT_DOUNT 25	193	+#define DEFAULT_ALPHA 25
	-#define DEFAULT_GROUP 5		+Sdefine DEFAULT_BUNCH 25
188		195	
189	int main (int args, const char ' argy [])	195	int main (int args, const char ' argv [])
190			
191	(198	£
			+ extern void (* passwords)(unsigned, unsigned, unsigned, unsigned, unsigned, char, flag_t);
	static const char * optv [] =	200	static const char * optv [] =
	(201	(
194	- "b:l:qp:uv",		+ "bilimgsirv",
	PUTOPTV_S_FUNNEL,		PUTOPTV_S_FUNNEL,
196	"Atheros device password generator",		"Atheros device password generator",
		205	
190	 "1 n'tpassword letters [" LITERAL (DEFAULT_COUNT) "]", 	206	
		200	 "m\tbase password on MAC address (less secure)",

But still devices from 2015 and older + chineese and some other devices remain vulnerable **Pent. 4**.

Attacking vulnerable devices

• Discover CCo to get a MAC address:

```
python plcmon.py
[*] Enabling sniff mode
Sent 1 packets.
[*] Listening for CCo station...
Found CCo: 44:94:fc:56:ff:34 (DAK: RMHT-ILPO-TYMN-IIXY)
[...]
```

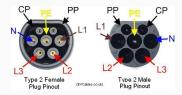
• Run K.O.DAK attack to reconfigure the NMK remotely:

```
python quickKODAK.py -i eth0 -t 4494fc56ff34
Sent 1 packets.
```

 $\cdot\,$ Configure our PLC to connect to the targeted AVLN

Intruding V2G networks

Starting vector



The Combined Charging System connectors

Different types of connectors exist, like IEC 62196 in UE:

- PP: Proximity pilot for pre-insertion signaling
- CP: Control Pilot for post-insertion signaling
- PE: Protective earth
- N: Neutral (single/3 phase AC/DC-mid)
- L1, L2 and L3 three-phase AC/DC-mid

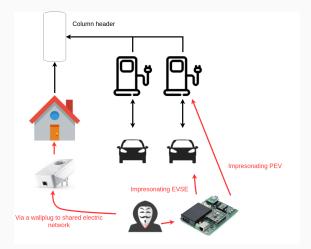
HGPG data multiplexed onto the Control Pilot and ground lines

Our first device to test it

dLAN Green PHY eval board EU II \rightarrow multiple interfaces

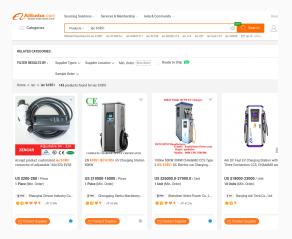
But cheaper alternatives exist

Cheapest way: the wallplug


- Any QCA 7k will do the work
- Ex: Devolo 1200+ works like a charm
- No modification needed if charging stations share the same electrical network
- Otherwise, some rework should be done on the coupler

We are actually working on some modular rework with this adaptor

How to interface


With a charging station connector

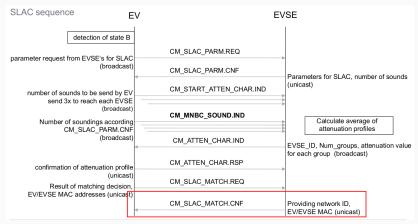
Where can we find those connectors?

You can really find everything in Alibaba, even charging stations...

Plug-in Electrical Vehicle (PEV) Association

- PEV can be charged everywhere (public, home, etc.)
- It leaves unconfigured in new AVLN (AV Logical Network)
- So it needs to join the AVLN of the corresponding EVSE once plugged with a charging connector

source: HomePlug Green PHY whitepaper


Use of SLAC procedure

- SLAC: Signal Level Attenuation Characterization
- Aimed to avoid bad association (avoid billing errors, etc)
- Principle:
 - 1. PEV broadcast unacknowledged SOUNDING packets
 - 2. Stations (EVSE) around measure the received power and send it to the PEV
 - 3. PEV finally select the EVSE with the best result
 - 4. Then EVSE provides a network (how???)

SLAC procedure (2)

source: HomePlug Green PHY whitepaper

Can be set in 3 specific modes:

- Unconfigured
- PEV: can see HPGP specific packets from EVSE
- EVSE: see HGPG specific packets from PEV

Each mode allows or disallows the interception of certain HomePlug GP packets at MAC Layer 2

Can be set in 3 specific modes:

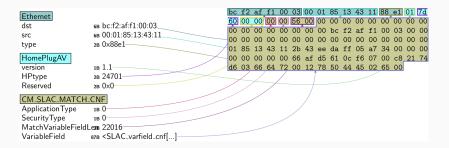
- Unconfigured
- PEV: can see HPGP specific packets from EVSE
- EVSE: see HGPG specific packets from PEV

Each mode allows or disallows the interception of certain HomePlug GP packets at MAC Layer 2

Warning

Need the correct mode to collect MME packets of a specific device

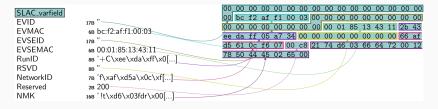
Change SLAC mode into PEV modifying byte 0x1653 with "setpib" after dumping it with *plctool*⁵:


\$ setpib PIBdump.pib 1653 byte 1

Then \rightarrow capture packets coming from EVSEs

⁵https://github.com/qca/open-plc-utils

When analyzing the SLAC procedure \rightarrow surprise!



It was supposed to be a unicast packet, isn't it? \rightarrow but it is broadcasted in the Power-Line!

Getting keys of AVLNs

By decoding the different fields of the CM_SLAC_MATCH.CNF message:

Our PLC can be easily set by changing "slac/pev.ini" profile and used with "pev" tool⁶

⁶https://github.com/qca/open-plc-utils

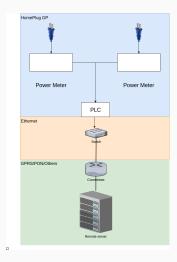
- Once part of an AVLN \rightarrow we can talk to every possible device into the same AVLN
- Reach services exposed by devices
- Intercept exchanged data EV \leftrightarrow charging station

More about: V2G Injector

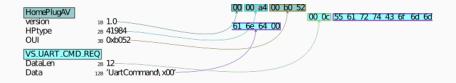
- Available: https://github.com/FlUxIuS/V2GInjector
- Paper, slides and recording: click here (SSTIC 2019)

Attacking the charging station

- Runs a complex OS (Linux generally)
- Some available services:
 - V2G webservice
 - SSH
 - Web console/management/log interface
 - Sometimes: Telnet and more...
- $\cdot\,$ Connected to an operator
- If attacked \rightarrow used as pivot



Intruding from smart meters


HomePlug applied to Smart Grids

- HomePlug SG (Smart Grids) → subset of HomePlug GP
- A master (CCo) PLC is connected to a switch
- Each power meter use a PLC modem to connect to a CCo PLC
- Sends UART commands through PowerLine → WTF?!

Very simple to generate with Scapy

- You can test it on detected devices \rightarrow it will reply with a confirmation message
- Implemented in HomePlugPWN⁷

⁷https://github.com/FlUxIuS/HomePlugPWN/blob/master/ layerscapy/HomePlugSG.py

But you know...

- An AVLN can hold 254 stations max.
- + Each node instantiated by a CCo \rightarrow different NMK
- And we need to get this NMK somehow...

This secret is stored somewhere...

Program Information Blocks (PIB)

- Used to store PLC's configuration
- Enables/Disables certain modes (WireTap, Sniffing, SLAC, etc.)
- A lot of non-documented blocks
- $\cdot\,$ Many features could be discovered by digging this way

A lot of blocks have been retrieved and implemented in $ModulePIB^8$ of the HomePlugAV.py Scapy layer \rightarrow still needs more work to decode all of them

⁸https://github.com/FlUxIuS/HomePlugPWN/blob/master/ layerscapy/HomePlugAV.py
Pent.1.

Dump PIB

2 tools:

- PIBdump.py of HomePlugPWN
- · *plctool* of *open-plc-utils* \rightarrow support more PLC chipsets

```
./plctool -f -i enp0s31f6 -p /tmp/plc.pib local
enp0s31f6 00:B0:52:00:00:01 Fetch NVRAM Configuration
enp0s31f6 F4:06:8D:CE:00:7D TYPE=0x15 (M25P32_ES) PAGE=0x0100 (256) BLOCK=0x10000
(65536) SIZE=0x400000 (4194304)
enp0s31f6 00:B0:52:00:00:01 Read Module from Memory
```

Management interface only

Only work on the management interface, and not directly on the PLC interface. Unless you have a DAK key.

Analyze PIB

The tool chkpib of open-plc-utils allows extracting information:

- PIBdump.py of HomePlugPWN
- · plctool of open-plc-utils \rightarrow support more PLC chipsets

- We are able to intrude the network from Smart grid device like a Smart Meter
- \cdot Whats is next? \rightarrow depends on the operators
- We can be tempted to:
 - Scan and discover other devices or hosts
 - Hunt for vulnerability in exposed devices or hosts
 - Etc.

Conclusion

Conclusion

- Power-Line Communication is almost everywhere
- HomePlug is widely used, accessible and some attacks can be engaged
- Logical vulnerabilities exist in specs and vendors configurations
- A lot of bugs under the Layer 2 MAC could be found \rightarrow but PLC is not open enough (we're working on it)
- Much more work should be also done on ITU-T G.hn \rightarrow widely used in NAN as in HAN
- G3-PLC and PRIME are not publicly explored yet, but are less accessible

Questions?

Thanks!

