

Attacking IoT Devices through 5G interface

By Sébastien Dudek

About myself

Founder of Penthertz

- Sébastien Dudek (<u>@FlUxluS</u>)
- CTO of Penthertz (as Chief Taxes Officer...)
 - Specialized in Wireless communications security
- > 10 years of experience in Software & Hardware security
 - Security researcher
 - Pentester & Red Team
 - Vulnerability researcher

• Started the company during COVID \rightarrow thinking about writing a book

Future book idea

My next book (or not)

Forget everything you learned before, except about taxes <3! The fun and easy way® to create a blueprint for growth and profits tep guille carterial Super Success.' The Sun Businessians Star **Revised to cover the** latest planning issues and techniques Paul Tiffany, PhD and the Wharton School of Rusing Steven D. Peterson, Phi A Reference for the Rest of Us! and CEO of Strategic Play

*but people have seen worse in restaurants... \otimes

Penthertz

((((()))

Main activities

Security assessments

- Wireless communications (RFID, Wi-Fi, Mobile communications, Bluetooth, etc.)
- Embedded devices
- Backend servers
- Red Team

Trainings

- Software-Defined Radio
 Hacking
- Wi-Fi Red teaming
- RFID Hacking
- Mobile attacks (2G/3G/4G/5G), and more...

Hardware security

- Firmware extraction
- Chip off
- Secrets extraction
- Library's analysis
- Vulnerability hunting

Setup to PWN the radio

RF Signal

Part of the SDR material

- Need to manage any type of transmission (2G-5G, Wi-Fi, Remotes, Bluetooth, ZigBee, RFID, exotic communications, etc.).
- Today's challenges: handling from DC to 6 or even 8 GHz with a decent stability
- Next challenges → 30 GHz at least with mmWave bands
- Able to get large bandwidth in some situation (sometimes > 100 Msps even >= 300 Msps)

2021 Picture \rightarrow the tables have never been so clean!

SDR has also performance limits to overcome, but let's talk about 5G use case in IoT!

Let's talk about 5G devices!

Context

5G case in IoT

 A lot of new technologies are expected in 2023/2024

• Why:

- eMBB (enhanced Mobile Broadband → very low latency vs 4G
- massive Machine Type Communications (mMTC)
- Use of new bands
 - Even private/unlicensed bands

Cellular IoT use case segments

Source: https://www.helpnetsecurity.com/2019/06/14/5g-subscriptions-forecast/

Mobile network* \rightarrow more than 30 years

penthertz.com

2G-4G networks

2G, 3G & 4G Network Architecture

Our feeling about 5G in some EU countries...

Source: 3GPP

5G NSA: what we have currently

Source: 3GPP

5G SA: what should we expect in mid-20212223 in FR?

Use of SDN (Software-Defined Network) \rightarrow CUPS, reduce operation costs, faster services, plug/unplug instances in the network, etc.

Security comparison in brief

	2G	3G	4G	5G
Client authentication	YES	YES	YES	YES
Network authentication	NO	Only in USIM mode	YES	YES
Signaling integrity	NO	YES	YES	YES
Encryption	A5/1 in use	KASUMI SNOW- 3G	SNOW-3G AES- 128 CTR ZUC	SNOW-3G AES- 128 CTR ZUC

State of the 5G

- People are disappointed with slow data → 5G NSA is still in use
 - But also, people paid the price for a "5G connectivity"...
- 5G SA implementation is still lagging in some EU countries
- Based on MWC 2023 comms → it's coming soon...*

*But what about your phone???

Goal

- Extract secrets exchanged between the device and the backend
- Attack the device and its exposed services
- Get knowledge on how to interact with the backend \rightarrow attack!

Targets

- Everything requiring a mobile connectivity:
 - Intercoms
 - Alarms
 - IVI (In-Vehicle Infotainment) systems
 - Routers
 - Probes
 - Etc.

2019 5G Cybersecurity hackathon

- Target to hack:
 - Read our story there: <u>https://medium.com/mobile-stacks-and-networks-security</u>

Our first targets since 2021

• Goal:

- Extract secrets exchanged between the device and the backend
- Attack the device and its exposed services
- Get knowledge on how to interact with the backend → attack!
- Mostly devices support different mobile stacks 2G/3G/4G, etc.
- We can still use older stacks to perform assessment

Using devkits

penthertz.com

TCUs with 5G stacks used in cars

Not very common, but starting to be developed

Source: https://media-www.micron.com/

What do they have in common?

- Composed of:
 - Applicative processor
 - 2 frontends:
 - DRx & PRx → radio transmission
 - Baseband processor → implementing the mobile stacks
 - Memory:
 - NAND & DDR
 - And other interfaces...

5G stack security in brief

Security mechanisms

- For integrity and confidentiality \rightarrow inherit from 4G algorithms:
 - 128-NEA1/128-NIA1: SNOW-3G
 - 128-NEA2/128-NIA2: AES-128 CTR
 - and 128-NEA3/128-NIA3: 128-bit ZUC used mainly in China

Security mechanisms (2)

- In NSA: same architecture as 4G → same security
- In SA: improvements with authentication schemas 5G AKA, EAP-AKA' et EAP-TLS

ETSI TS 133 501 V16.3.0 (2020-08

Security mechanisms (3)

Improved authentication method

Source: 5G Security: Standard and Technologies par Dr. Haiguang Wang, Senior Researcher, Huawei Internationa

5G stack security in brief

Optional mechanisms

- User plane integrity (3GPP technical report TR 33.853) \rightarrow not supported by all Ues
- Identity anonymization in SA (ETSI TS 133 501) \rightarrow protect the SUPI (replacement of IMSI) \rightarrow SUCI
 - Needs the ISIM to be ready with a PLMN public key
 - Can be compromised with a downgrade attack to 4G \rightarrow forcing an Attach-Request to happen

Source: 3GPP 5G Security par Anand R. Prasad, Sivabalan Arumugam, Sheeba B and Alf Zugenmaier

5G stack security in brief

Downgrading security: dumb way

- Goal \rightarrow downgrade to 2G \rightarrow bypass mutual authentication
- Could be done naturally (parking stations, uncovered areas...)
- Complex way: using signaling vulnerability/tricks (e.g: <u>https://www.researchgate.net/figure/Mobile-device-soft-downgrading-to-GSM-by-rogue-LTE-base-station_fig6_305401180</u>)
- Or dumb way with Jamming:
 - Dedicated device \rightarrow available on AliExpress
 - Smart-jamming:
 - ModMobMap (soon available for 5G) & Modmobjam
 - → <u>https://github.com/PentHertz/Modmobjam</u>

Caution: > stacks to downgrade \rightarrow more resources!

Caution 2: Jamming is not legal

Downgrading security: smart way

- Like for 4G, playing with Tracking Area
 Update procedure → reject causes →
 make the baseband switching to older
 stacks → need to modify srsRAN's stack
- New: 5G NSA NEA0 Bidding-Down Attack + 5G to 2G demonstration in "Never Let Me Down Again: Bidding-Down Attacks and Mitigations in 5G and 4G" by Bedran Karakoc, Nils Fürste, David Rupprecht, Katharina Kohls from Radix-security

Downgrading security: smart way (2)

UE	Atta	cker	NB gNB	EPC		
1						
L	1a) Attach / TAU Request		1b) Manipulated Attach / TAU Request			
Ī	(NEA0=1, NEA1=1, NEA2=1, NEA3=1)		(NEA0=1, NEA1=0, NEA2=0, NEA3=0)	î		
		2a) NAS Security	Mode Command			
1		(HashMME, Replayed UE	Additional Security Caps)	1		
I	2b) NAS Securityl Mode Complete					
			3) S1AP Initial Context Setup R	equest		
			(UE Additional Security Capabili	ties)		
I		l	4a) X2AP SgNB Addition Request	1		
1			(UE Additional Security Capabilities)			
, I	5a) RRC Reconfigu	ration (NR Bearer)	4b) X2AP SgNB Addition Request Ack.			
	(Selected Cipher	Algorithm: NEA0)		1		
i.	5b) RRC Reconfig	uration Complete	i i	i i		
⊢ I		6b) Unencrypted User Plane Data	 >	1		

Figure 2: 5G NSA NEA0 Bidding-Down Attack.

https://radix-security.com/files/2021_downgrade.pdf

Isolation

- Use of Faraday cage/shield: ~5000€ (for custom one) → be warned about reflections
- Goal: avoid conflict with operators + isolate from other devices, noise, etc.
- Cheaper ways:
 - A home-made can be made + using attenuation in software + hardware → but not certified ¬_(ツ)_/⁻
 - Possible to use good well-made SMA extension cable → requiring an antenna rework sometimes

Our setup starting 2021

- Commercial:
 - Amarisoft \rightarrow preferable for SA for the moment
 - Minimum budget: >20 000€ (hardware + license)
- Other options but more expensive:
 - Rohde&Schwarz
 - Keysight

Mini version only supports 5G-NR SA

5G NSA with Opensource today

- Two main projects:
 - OpenAirInterface5G
 - srsRAN \rightarrow our favorite stack

5G NSA with Opensource today (2)

• Needs at least a USRP X300 with 2 specific daughter boards

5G SA with Opensource today

- Same as for NSA:
 - OpenAirInterface5G
 - srsRAN \rightarrow our favorite stack

Use of custom ISIM cards

- Goal: Complete mutual authentication
- At least a custom USIM, preferably ISIM:
 - USIM: Universal Subscriber Identity Module
 - ISIM: IP Multimedia Services Identity Module → SIP/IMS procedure
 - Generate Ki, OPC \rightarrow provide on the gNB side
- Reference: <u>http://shop.sysmocom.de/products/sysmolSIM-SJA2</u> (USIM version is interesting to disable USIM mode)
- Only a PC/SC reader is needed
- Cheaper version \rightarrow AliExpress (with a *nice* software)

Use of custom ISIM cards (2)

-fluxius@trendmate ~/Projects/USIM/pysim «master» -\$ sudo python3 pySim-prog.py -p0 -t sysmoISIM-SJA2 -i 901700000048419 -c 33 -x 001 -y 01 -s 8988211000000484199 -a 63682414 StandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-root' sing PC/SC reader interface
eady for Programming: Insert card now (or CTRL-C to cancel)
enerated card parameters :
> Name : Magic
<pre>> SMSP : e1fffffffffffffffffffffffffffffffffff</pre>
> ICCID : 8988211000000484199
> MCC/MNC : 001/01
> IMSI : 901700000048419
> Ki : c6bd3a9172b188b8daf69643b65d686a
> OPC : 787f3270a48ef92b91146f5ef21681ea
> ACC : None

Note: Need for mutual authentication \rightarrow need to know secrets \rightarrow but an attacker can have access to SS7, DIAMETER, 5G infra (we will few aspects later...)

Use of custom ISIM cards (3)

- By default, the registration can fail \rightarrow processing of SUCI
- Two ways to fix
 - Providing it to the SIM (ETSI TS 131 121)
 - Or deactivating it:

```
$ python3 pySim-shell.py -p0
[...]
pySIM-shell (MF/ADF.USIM/DF.5GS)> select
EF.SUCI_Calc_Info
pySIM-shell (MF/ADF.USIM/DF.5GS/EF.SUCI_Calc_Info)> deactivate_file
```

Use of custom ISIM cards (4)

- Other points to look:
 - Use of same PLMN
 - Enabled 5G services
 - And some parameters relative to the network...

Other types of SIM

Other types of SIM

Soldered eUICC

https://f30.bimmerpost.com/forums/showthread.php?t=1642417

Soldered eUICC

- After desoldering, we can put our custom SIM card
- If IP is whitelisted, we can use the legitimate SIM card with a computer to forward accesses:

Soldered eUICC but extra SIM slot

- Embedded SIM needs to be chipped off before hooking them
- But 2nd slot exists in most cases + need to force the use with AT commands

Pin name	Pin no.	Electrical description	Description	Comment
(U)SIM1_PWR	36	PO	Power supply for (U)SIM1 card	
(U)SIM 1_DATA	34	DIO	(U)SIM1 card data, which has been pulled up to (U)SIM1_VDD via a 20KR resistor internally	
(U)SIM 1_CLK	32	DO	(U)SIM1 clock signal	
(U)SIM1_RESET	30	DO	(U)SIM1 Reset control	1.8/3.0V voltage
(U)SIM 1_DET	66	DI	(U)SIM1 card detect, which has been pulled up to VDD_P3 via a 470KR resistor internally	domain, all (U)SIM interfaces should be
(U)SIM2_PWR	48	PO	Power supply for (U)SIM2 card	protected against
(U)SIM2_DATA	42	DIO	(U)SIM2 card data, which has been pulled up to (U)SIM2_VDD via a 20KR resistor internally	ESD. If unused, please keep open
(U)SIM2_CLK	44	DO	(U)SIM2 clock signal	
(U)SIM2_RESET	46	DO	(U)SIM2 Reset control	
(U)SIM2_DET	40	DI	(U)SIM2 card detect, which has been pulled up to VDD_P3 via a 470KR resistor internally	

5G SA support on phones

. ...

- Be careful of supported bands!
- A good reference: <u>https://cacombos.com/</u>
- But despite these notes
 → surprises!

LG Velvet 5G (T-Mobile USA) (LM-G900TM) 4G/5G Bands and Combos

Modem Model	Dimensity 1000C
Release Year	2020
LTE DL/UL Modulation	256QAM / 64QAM
LTE Bands	1, 2, 3, 4, 5, 8, 12, 13, 17, 20, 25, 26, 28, 39, 41, 66, 71
LTE 4x4 Bands	2, 4, 25, 41, 66
LTE Category (DL/UL) 🔞	18 / 13
LTE Max Speed (DL/UL) 🔞	1200 / 150 Mbps
NR NSA Bands	25, 41, 66, 71
NR SA Bands	71

5G NR Bands

• To be respected in the configuration:

NR band n71 basic inf	ormation													
RAT	NR				Ν	R ba	nd		n	71				
Name	600				D	uple	x mo	ode	F	DD				
Frequency (UL)	663.00 MH	z - 69	98.00	MH	z Fr	equ	ency	(DL) 6'	17.00) MH	z - 6	52.0	0 MHz
NR-ARFCN (UL)	132600 - 13	3960	0		N	R-AI	RFCN	1 (DI	.) 12	2340	0 - 1	3040	00	
N _{ref} Step	20				Δ	Fraste	er (kl	Hz)	1(00				
Band bandwidth (UL/DL)	35 MHz				D	uple	x sp	acing	g 40	5 MF	lz			
Geography area	NAR													
Channel bandwidth						Char	nnel	Band	widt	h(M	Hz)			
	SCS(KHz)	5	10	15	20	25	30	40	50	60	70	80	90	100
	15	~	~	~	~	×	×	×	×	×	×	×	×	×
	30	×	~	~	~	×	×	×	×	×	×	×	×	×
	60	×	×	×	×	×	×	×	×	×	×	×	×	×

NR band n71 spectrum/overlapped bands

https://itectec.com/band/nr-band-n71/

But support is "fictive" sometimes...

- Not all phones support 5G SA
- Even if the commercial tells you so (e.g.: Exynos basebands, MKT Dimensity 1000C, HiSilicon, etc.)
- Some Huawei phones used to support it (e.g.: Mate X):
 - But now only in firmware for CN → need to downgrade them, maybe patch them
 - New upgrade in EU \rightarrow restrict SA
 - Sometimes need to adjust PLMN to Chinese one + in ISIM (e.g.: MCC/MNC = "460 11")

https://en.wikipedia.org/wiki/Mobile_network_codes_in_ITU_region_4xx_(Asia)

MCC	MNC	Brand	Operator
460	00	China Mobile	China Mobile
460	01	China Unicom	China Unicom
460	02	China Mobile	China Mobile
460	03	China Telecom	China Telecom
460	04	China Mobile	Global Star Satellite
460	05	China Telecom	China Telecom
460	06	China Unicom	China Unicom
460	07	China Mobile	China Mobile
460	08	China Mobile	China Mobile
460	09	China Unicom	China Unicom
460	11	China Telecom	China Telecom
460	20	China Tietong	China Tietong

Ref:

Case of failure (e.g.: LG Velvet 5G)

- Fail even respecting:
 - Duplex mode
 - NR-ARFCN
 - NR band
 - SCS
 - Etc.

Possible to debug → LTE registration try

6:00.267 [NAS] UL 0003 EMM: Attach request
Protocol discriminator = 0x7 (EPS Mobility Management)
Security header = 0x1 (Integrity protected)
Auth code = $0x9b6dbbb3$
Sequence number = 0x03
Protocol discriminator = 0x7 (EPS Mobility Management)
Security header = 0x0 (Plain NAS message, not security protected)
Message type = 0x41 (Attach request)
EPS attach type = 2 (combined EPS/IMSI attach)
NAS key set identifier:
TSC = 0
NAS key set identifier = 0
Old GUTI or IMSI:
MCC = 001
MNC = 01
MME Group ID = 32769
MME Code = 1
M-TMSI = 0x84749e1a
UE network capability:
0xf0 (EEA0=1, 128-EEA1=1, 128-EEA2=1, 128-EEA3=1, EEA4=0, EEA5=0, EEA6=0, EEA7=0)
0xf0 (EIA0=1, 128-EIA1=1, 128-EIA2=1, 128-EIA3=1, EIA4=0, EIA5=0, EIA6=0, EIA7=0)
0xc0 (UEA0=1, UEA1=1, UEA2=0, UEA3=0, UEA4=0, UEA5=0, UEA6=0, UEA7=0)
0xc0 (UCS2=1, UIA1=1, UIA2=0, UIA3=0, UIA4=0, UIA5=0, UIA6=0, UIA7=0)
0x1d (ProSe-dd=0, ProSe=0, H.245-ASH=0, ACC-CSFB=1, LPP=1, LCS=1, 1xSRVCC=0, NF=1)
0x00 (ePCO=0, HC-CP CIoT=0, <u>ERw/o</u> PDN=0, S1-U data=0, UP CIoT=0, CP CIoT=0, ProSe-relay=0, ProSe-dc=0)
0x10 (15 bearers=0, SGC=0, <mark>N1mode</mark> =0, DCNR=1, CP backoff=0, RestrictEC=0, V2X PC5=0, multipleDRB=0)

Missing N1 mode

Case of success

• Expected even in LTE registration:

5G-NR SA registration: Amarisoft's Web interface

UL/DL -	Layer	- UE ID	▼ IMSI	•	Cell ID	-	Info	→ Level →	From: ENB Info: 192.168.1.116:9001, v2021-09-18
Time origin: 00:0	0:00.000	Group UE ID:						Clear 👻 🕂	Time: 23:52:49.213 Index: 5031
() 🔶 🔷 I	Search		👫 🤄 📄 🚮 Analytics	🎇 RB 🔒	UE Caps				Message: format=2 prb=49 prb2=1 sym epre=-106.5
Time	Diff	RAN CN	IMS UE ID IMSI	Cell	SFN	RNTI	Info	Message	
-	•	PHY	3	1	4. 399.19	0×4603	PUCCH	format=1 prb=50 prb2=0 symb=0:14 cs=0 occ=0 ack=1 snr=21.	
-	(RLC	3				DRB1	① D/C=0 CPT=0 ACK_SN=39	
-	(MAC	3	1				() LCID:4 len=3 PAD: len=219	ENB constellations
-	(PHY	3	1	4.400.6	0×4603	PDCCH	ss_id=2 cce_index=4 al=2 dci=1_1	
-	(PHY	3	1	4.400.6	0×4603	PDSCH	harq=0 prb=50 symb=1:13 k1=12 nl=2 CW0: tb_len=225 mod={	No standar has she tout
23:53:01.691	+0.003	GTPU 🧔						127.0.1.100:2152 G-PDU TEID=0x32149638 QFI=1 SDU_le	
23:53:01.692	+0.001 🤙	PDCP	3				DRB1	() D/C=1 SN=41	
-	4	RLC	3				DRB1	① D/C=1 P=1 SI=00 SN=41	- 黄金 医 音 带 酒
-	4	MAC	3	1				ICID:4 len=59 PAD: len=163	the second in the state
-	4	PHY	3	<u>1</u>	4.400.14	0×4603	PDCCH	ss_id=2 cce_index=4 al=2 dci=1_1	
-	4	PHY	3	Frame: 3.9	36.9 0.14	0×4603	PDSCH	harq=1 prb=50 symb=1:13 k1=5 nl=2 CW0: tb_len=225 mod=8	
-		GTPU 🧔		Cell: #1				127.0.1.100:2152 G-PDU TEID=0x32149638 QFI=1 SDU_le	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
-	-	PHY	3	1	4.400.8	0×4603	PUCCH	format=1 prb=50 prb2=0 symb=0:14 cs=8 occ=2 sr=1 snr=21.5	and the set of the same state
-	4	PDCP	3				DRB1	① D/C=1 SN=42	And the second
-	4	RLC	3				DRB1	D/C=1 P=1 SI=00 SN=42	· 读者 あ や * *
-	4	MAC	3	1				ICID:4 len=59 PAD: len=163	The second second
-	4	PHY	3	1	4. 400.15	0×4603	PDCCH	ss_id=2 cce_index=2 al=2 dci=0_1 k2=4	
-	4	PHY	3	1	4. 400.15	0×4603	PDCCH	ss_id=2 cce_index=6 al=2 dci=1_1	
-	4	PHY	3	1	4. 400.15	0×4603	PDSCH	harq=2 prb=50 symb=1:13 k1=4 nl=2 CW0: tb_len=225 mod=8	"我去我是我我
23:53:01.693	+0.001 📦	PHY	3	1	4. 400.9	0× 4603	PUCCH	format=2 prb=49 prb2=1 symb=2:2 csi=1011111 epre=-104.4	the state of the second second
23:53:01.697	+0.004 📦	PHY	3	1	4. 400.18	0×4603	PUCCH	format=1 prb=50 prb2=0 symb=0:14 cs=0 occ=0 ack=1 snr=21.	
			-						$M_{\rm eff} = M_{\rm eff} + M_{e$

Assets to look

- Clear-text communications
- Checked certificates
- Data confidentiality
- Use leaked endpoints to pivot
- Pass the NAT via authenticated STUN
- Look at other secrets to pivot (e.g.: 802.1x, etc.)

Extracting secret: monitoring net interfaces

• Looking at right interface, we can then smoothly

0020 70 68 72 61 73 65 3d 40 23 66 52 30 40 40 23 44 phrase=@ #fR0@@#D
--

Leaked APN and PPP conf

```
6796 10.672777362 127.0.0.1
                                        127.0.0.1
                                                             ICMP
                                                                        180 Destination unre
▶ Packet Data Protocol Address - Requested PDP address
▼ Access Point Name
    Element ID: 0x28
    Length: 12
    APN: ir
Protocol Configuration Options
    Element ID: 0x27
    Length: 59
    [Link direction: MS to network (0)]
    1... = Extension: True
    .... .000 = Configuration Protocol: PPP for use with IP PDP type or IP PDN type (0)
  Protocol or Container ID: Password Authentication Protocol (0xc023)
      Length: 0x24 (36)
    PPP Password Authentication Protocol
         Code: Authenticate-Request (1)
         Identifier: 1
        Length: 36
       ▼ Data
           Peer-ID-Length: 20
           Peer-ID: sd
                                      fg
           Password-Length: 10
           Password: v
  Protocol or Container ID: Internet Protocol Control Protocol (0x8021)
      longth \cdot 0 \times 10 (16)
```

Limits

- Sometimes, we can be limited \rightarrow data is encrypted, etc.
- We can attack the microcontroller, or host using the mobile modules
- But sometimes, manufacturers prefer using the mobile module SDK, rather than using limited microcontroller libraries...
 - So, there is also something to look on this mobile module ;)

Attacking the mobile module

The mobile module

- Can be composed of an application processor running Linux and the baseband processor
- To access to it we can try:
 - Serial port interfaces
 - Using I2C, SPI, JTAG
 - Or to interface with AT and DIAG
- Usually AT and DIAG access are accessible

Attacking via AT commands

• Inspired by Harald Welte at 33c3 in 2016:

```
# echo -e 'AT+QLINUXCMD="/sbin/getty -L ttyGS0 115200 console"\r\n' >
/dev/ttyUSB2
# microcom /dev/ttyUSB1
OpenEmbedded Linux 9615-cdp ttyGS0
msm 20160923 9615-cdp ttyGS0
9615-cdp login: root
Password: oelinux123
root@9615-cdp:~#
```

Some kind of accesses we found on SIM8200A (presented at NoHat 2021):

AT+CUSBCFG=usbadb, 1

Hardware: shortcutting EDL PIN

- Exposed PIN allows us to pass in adb or fastboot → Yes! Android is everywhere!
- If this PIN is not directly exposed → search or 1 millivolt PIN and short cutting it with a 1.8-volt tension

Attacking the mobile module

Or with EMFI attacks

Triggering fastboot mode

```
Android Bootloader - UART_DM Initialized!!!
[0] welcome to lk
[...]
[640] ERROR: Cannot read boot image
[640] ERROR: Could not do normal boot. Reverting to fastboot mode.
[650] battery is not present
[650] fastboot_init()
```


• Or **EDL** mode:

```
[…]

[310] undefined abort, halting

[310] r0 0x0000018 r1 0x83362e02 r2 0x0000000 r3 0x0000003

[...]

0x8f6c15e8: 8f6a6734 8f6a6734 0000000 8f6a6734 |.gj..gj....gj.|

[310] HALT: reboot into dload mode.�
```

To finally get the FS \rightarrow and extract secrets!

Offset 0x000000083****, Length 0x00000000*0000, Flags boot: 0x100000000000000, UUID b512967*******010e94, Type 0x20117f86, Active False Offset 0x00000000*****, Length 0x00000003****0000, Flags system: 0x10000000000000, UUID d51623ef-******7f1e, Type 0x97d7b011, Active False persist: Offset 0x0000000***c000, Length 0x000000002000000, Flags 0x100000000000000, UUID debadb79******65f3b, Type 0x6c95e238, Active False cache: Offset 0x0000000**c000, Length 0x000000006e00000, Flags 0x100000000000000, UUID 98e95bc2*******cd6c, Type 0x5594c694, Active False Offset 0x0000000***c000, Length 0x000000002000000, Flags recovery: 0x1000000000000000, UUID 2798******b03a9e7, Type 0x9d72d4e4, Active False [...]

Thanks to <u>https://github.com/bkerler/edl</u>;) → avoid all Sahara / Firehose setup

Future targets!

What's a RAN

- Radio Access Network (RAN)
 - Link between mobile core network and the user equipment
- Exists since 2G:
 - GSM → GRAN
 - 4G → E-UTRAN (Evolved Universal Terrestrial Radio Access Network)
 - 5G → NG-RAN (Next Generation Radio Access Network)

Simplified representation of an Open RAN architecture (source: Nokia)

Opening the RAN

- Classic issues with current RANs:
 - Inflexibility
 - Compatibility issues
 - High costs due to small number of competitors
- Main vendors:
 - Ericsson
 - Nokia
 - Huawei (banned in some countries)

Opening the RAN (2)

- Advantages of Opening RAN:
 - Reduce costs
 - Interoperability
 - And also a good opportunity for the US to enter the market finally! ;)
- O-RAN architecture \rightarrow enhancement to existing 3GPP standards

Evolution

- Complexity of protocol stacks increases \rightarrow sub-6GHz bands, mmWave, over 100 GHz + IoT systems, etc.
- Multiple solutions were studied before O-RAN:

What is Open RAN – Quick Recap

CPRI = Common Private Radio Interface

CU = Centralized Unit DU = Distributed Unit RoE = Radio over Ethernet eCPRI = Ethernet CPRI

Architecture

penthertz.com

Exposure

- Each RT-RIC and non-RT-RIC \rightarrow run in containers insides Kubernetes pods
- Without proper isolation \rightarrow exposition to attacks
- This was discussed by Karsten Nohl at MCH2022 → but not very clear :/
- So let's create a scenario:

Main attack vectors

Kubernetes Interfaces

Kubernetes interfaces can be scanned with Kube-hunter:

```
$ python3 kube-hunter.py
Choose one of the options below:
1. Remote scanning (scans one or more specific IPs or DNS names)
2. Interface scanning (scans subnets on all local network interfaces)
3. IP range scanning (scans a given IP range)
Your choice: 3
CIDR separated by a ',' (example -
192.168.0.0/16, !192.168.0.8/32, !192.168.1.0/24): 10.0.2.10/24
2022-10-11 13:33:34,153 INFO kube hunter.modules.report.collector Started
hunting
2022-10-11 13:33:34,154 INFO kube hunter.modules.report.collector Discovering
Open Kubernetes Services
2022-10-11 13:33:34,259 INFO kube hunter.modules.report.collector Found open
service "Etcd" at 10.0.2.100:2379
2022-10-11 13:33:34,266 INFO kube hunter.modules.report.collector Found open
service "Kubelet API" at 10.0.2.100:10250
2022-10-11 13:33:34,291 INFO kube hunter.modules.report.collector Found open
service "API Server" at 10.0.2.100:6443
2022-10-11 13:33:34,304 INFO kube hunter.modules.report.collector Found
vulnerability "K8s Version Disclosure" in 10.0.2.100:6443
```

xApps

A good candidate

xApp Flows

Backdooring the chart

Looking at exposed ChartMuseum of the Appmanager interface:

```
# nmap -A 10.0.2.100
[...]
PORT
         STATE SERVICE
                             VERSION
[...]
8090/tcp open opsmessaging?
 fingerprint-strings:
   GenericLines, Help, RTSPRequest, SSLSessionReq, TerminalServerCookie:
     HTTP/1.1 400 Bad Request
     Content-Type: text/plain; charset=utf-8
     Connection: close
     Request
   GetRequest:
     HTTP/1.0 200 OK
     Content-Type: text/html
     X-Request-Id: cf122339-6f7f-4196-aa83-a1ab09da314a
     Date: Wed, 12 Oct 2022 09:20:43 GMT
     Content-Length: 547
     <!DOCTYPE html>
      <html>
      <head>
     <title>Welcome to ChartMuseum!</title>
```


Backdooring the chart (2)

We can use the O-RAN tools dms_cli to onboard new xApps:

```
export CHART_REPO_URL=http://10.0.2.100:8090
$ dms_cli health
True
```

- We can implement an xApp in different languages:
 - Python: https://github.com/o-ran-sc/ric-app-hw-python
 - Rust: https://github.com/o-ran-sc/ric-app-hw-rust
 - Go: https://github.com/o-ran-sc/ric-app-hw-go
 - C++: https://github.com/o-ran-sc/ric-app-hw

Conclusion

Conclusion

To conclude

- Only eMBB (enhanced Mobile Broadcast) have been tested yet
- But mMTC (massive Machine Type Communication) and URLLC (Ultra Reliable Low Latency Communication) may be strictly used by some IoT devices, like with NB-IoT and Cat-M1 in 4G → more challenges with Open-source setup
- 5G modules are not used a lot yet, only development prototypes have been tested with our clients
 - But may change in the future
- We are also C-V2X but still postponed → available devices in production → contact us if you've any to test!
 ;)
- Baseband attacks would also be still a thing to go further:
 - VoLTE as for VoNR and other complex protocols implemented in BB would be a good candidate → https://googleprojectzero.blogspot.com/2023/03/multiple-internet-to-baseband-remote-rce.html
 - Uncyphered ARM basebands are generally good candidates

Thank You

Please contact us:

•••

- ⊠ contact@penthertz.com
- Sec. 123 1 73 13 82 77
- penthertz.com

Watch us on You Tube

